| Docker deep dive

2024-10-01

Docker deep dive
How we leverage the Docker stack 1. Hello, my name is Ezri Zhu | am a second year computer science
undergrad at the Stevens Institute of Technology
2. | have been the VP of tech at blueprint since last year. There will
be a Q&A at the end, tho feel free to interrupt me during the
Ezri Zhu presentation for questions.

tzhu22@stevens.edu
https://ezrizhu.com

Bluepring @ Stevens Institute of Technology

October 1, 2024

Ezri Zhu (Blueprint@Stevens) Docker deep dive October 1, 2024 1/22

https://ezrizhu.com
https://ezrizhu.com

Docker deep dive

2024-10-01

D\:,,,_ lble X3 T
Ocd 1. In this talk | will do a overview of the different components of a

typical docker deployment, then we'll get into how exactly we're
leveraging Docker at Blueprint

Dockerfile, Docker Images

Docker Container

Docker Registry

Docker-compose
Logo credit: https://github.com/Aikoyori/ProgrammingV TuberLogos/

Ezri Zhu (Blueprint@Stevens) Docker deep dive October 1, 2024 2/22

,) ; S

What's Docker for? - The Bigger Picture =
§ L—What's Docker for? - The Bigger Picture
N

Docker simplifies software development and deployment by packaging o)))) .

B 1. | will first give you a quick overview of how docker is used in a
applications and their dependencies into portable containers, that their .
behavi h diff . typical development cycle
ehavior are the same across different environment. 2. We're mostly software developers here, and | am sure most of you

@ Developer develops their application have ran into the issue where someone's application doesn't work on
someone elses computer

3. Those issues are usually solved by dependency issues, a certain
python application may rely on a bunch of other python

@ Developer writes a Dockerfile, defining how to package their
application in a docker container

@ Developer builds the Dockerfile into an image, pushes to a registry dependencies, and your systems package manager may also provide
@ Developer pulls the image from the registry on the deployment server these packaggs but under different versions, thus also breaking
. . seeemly working deployments
o _At the sa.me tlm.e, developer 2 can also pull the same image and test 4. With docker, you define exactly what the environment is, from the
it on their machine base OS image that the container is built from, to unpacking your

application

Ezri Zhu (Blueprint@Stevens) Docker deep dive October 1, 2024 3/22

Docker deep dive

S
Linux Namespace via unshare S
§ L Linux Namespace via unshare
This is your computer, a program usually have access to all of these N
system resources provided by the Kernel.
By default, processes you call will inherit all of your namespaces 1. This is your computer, a program usually have access to all of these
N X
progroms syscalls System Resources system resources provided by the Kernel.

2. By default, processes you call will inherit all of your namespaces,
just like how when you prefix a command with sudo, it will inherit

(fi\;efﬁ)e network all of root’s permissions
namespace 3. Here, you will notice three programs, a nginx reverse proxy, a

(\ . : .
postgres database, and my amazing webapp written in rust

my amazing webapp

Nginx

! — 4. As you can see, nginx is able to reverse proxy the webapp because
written in st & k,““““““““&f///> (ZPC nawespace | the;/, both share agnetwork namespace ’
- 5. Then, the webapp is able to communicate with the postgres
(database via a socket, so that's done in the IPC namespace
Postgres | — > Flesysten 6. There are other namespaces (PID, filesystem mounts, control
(database) _ J

groups, users), but we will pretend they don't exist for now for the
sake of simplicity.

_

Ezri Zhu (Blueprint@Stevens) Docker deep dive October 1, 2024 4/22

Linux Namespace via unshare

TD's Computer (he's a bit paranoid)
i

sv./s‘tem resources

namespace 1)
Erowser DN

namespace 2

-

B
browse| TT——
e)

2 network —

browser > network
3 namespace 3 | |

Ezri Zhu (Blueprint@Stevens) Docker deep dive

October 1, 2024

5/22

2024-10-01

Docker deep dive

L Linux Namespace via unshare

1. Here is an example of linux namespaces being used in the real world

2. TD has a computer and he really doesn’t want to be tracked by ad
companies and other organizations on the internet.

3. So he has three VPN setup in three separate linux network
namespaces.

4. He then spawns a browser in each of the three namespaces, where
he will work on different things.

5. This allows him to have three different IP addresses on the browser.

Docker deep dive

S
Overlayfs E
<4
§ I——Overlayfs o
How overlayfs works
1. Overlayfs at minimum uses four directories, a lowerdir, a upperdir, a
(overlay view Co. urion of everytiing workdi'r, and a directry tc.> mount the merged vi.ew of everything
L below) } 2. lowerdir contains everything that were already in the system, and
1 N ! overlayfs will not write to it
| upperddic Grite here) J workdhe 3. the merged directory, which we labled as overlay view on the
| lowerdi Cead) j diagram, .is where we will be .intere.xcting with overlayfs
“ 4. upperdir is where overlayfs will write changes to when they are
[lowerdic Cead) .. B made in the merged directory.
‘ 5. workdir is where overlay stage changes to as it is copying files up
from lowerdir to upperdir

_J

https://docs.kernel.org/filesystems/overlayfs.html

Ezri Zhu (Blueprint@Stevens) Docker deep dive October 1, 2024 6/22

https://docs.kernel.org/filesystems/overlayfs.html
https://docs.kernel.org/filesystems/overlayfs.html

Overlayfs

Beginning state

() (o) (s) |
overlay file 1 fle 2 fle 3

upper‘r}ir‘

lowerdir | file 1 file 2)

lowerdir)

fle 3 | U-\.le q
_J

- J

Ezri Zhu (Blueprint@Stevens)

Docker deep dive

October 1, 2024

7/22

2024-10-01

Docker deep dive

Overlayfs

I—Overlayfs

. For example, we have two directories, lowerdir 1, and lowerdir 2,

and they each contains two files

. You don't need to have two lower-directories, and when you first

start overlayfs with two lowerdirs, it will just merge the two

. You will have to give overlayfs three empty directories, one for the

upperdir, one for the workdir, and one to mount the overlay view to

. after overlayfs is mounted to the overlay view, you are able to see

the four files from the two lower directories in from the overlay view

Overlayfs

Makes file 5, edits file 1

uppero(ir Pile_ 1
(upda’te&)

lowerdir | file 1 Ble 2

lowe,roli ~

|

(s] [wes)

Ezri Zhu (Blueprint@Stevens)

Docker deep dive

October 1, 2024

8/22

2024-10-01

Docker deep dive Ouetys

I—Overlayfs

1. Here we'll make a new file called file 5, and we will edit file 1

2. As you can see, overlayfs writes the updated file 1, and creates file 5
in upperdir, leaving lowerdir alone. However, the changes are
reflected in the overlay view

Docker deep dive Ouetys

Overlayfs

2024-10-01

I—Overlayfs

Deletes file 2

1. Here, we will delete file two. For file deletions, overlayfs will write a

overlay \(;l: rﬁ[e = :,{:,w (Sl 5 character device at the location of the file that it is removing, and
- the file will disappear from the overlay view

— _ 2. You probably didn’t understand all of that, but the main takeaway is
veperdhe | fle 1 | Ble 2 that overlayfs allows us to stack filesystems on top of each other
(upda‘tQS}l (hiteout file) fle 5 X y X Yy . P K
_ like a hamburger, and if we want to add some files, we just add a
oot [& lettuce on the top with more files, if we want to remove some files,
owerdhe | Ble 1 | (ple 2] we add a lettuce on the top with a hole at where the file is

3. And that's how docker images are built, its just a big hamburger of

lowerdhir Sle 5} layers of filesystem states

Ezri Zhu (Blueprint@Stevens) Docker deep dive October 1, 2024 9/22

— Docker deep dive Ova
Overlayfs

I—Overlayfs

2024-10-01

And this is how you start an overlay mount

mount —t overlay overlay \
—o "lowerdir=$lowerdirl , $lowerdir2 ,upperdir=$upperdir , workdir=$workdir” "$overlay”

Ezri Zhu (Blueprint@Stevens) Docker deep dive October 1, 2024 10 /22

— Docker deep dive Ot

i
Overlayfs g

i

S [

[a\]

N Overlayfs

N
$ dock I t - . .
USif.’; defoult f:;;g[:iest 1. And this is also how docker works, when you build a container, each
latest: Pulling from library/postgres o 0 = E 2 2 2 . .
28037¢4b030: Pull complote line in t'he dockerflle is bgmg wrltter? to. it's own uppferdlr, with
009¢876521a0: Pull complete everything preceding are just lowerdirs in a merged view
c ccaz: u comp ete
6463d4bf467a: Pull complete 2. So when you pull a docker image and run it, each layer is just a
bd8b983728ed: Pull complete
febc167f3560 Pull complete lowerdir, and your container is mounted on the overlay view

d73c81lc4ade3: Pull complete

34b3b0ac6e9e: Pull complete

9bd86d074f4e: Pull complete

406f63329750: Pull complete

ec40772694b7: Pull complete

7d3dfal637e9: Pull complete

€217ca41159f: Pull complete

Digest: sha256:flaaf6f8be5552bef66c5580efbd2942¢c37d7277cd0416ef4939fa34bfObaf31l
Status: Downloaded newer image for postgres:latest

docker.io/library /postgres:latest

Ezri Zhu (Blueprint@Stevens) Docker deep dive October 1, 2024 11/22

— Docker deep dive Doctrtl

. S
Dockerfile =
§ L Dockerfile
N
A Quick Example 1. This is a pretty standard Dockerfile for a node application, packed
by npm
FROM node:20 2. First, we pull the node:20 image, maintianed by the nice people over
WORKDIR /app at nodejs, this allows us to pin our node version to be at 20
COPY . . 3. Second, we set the working directory to /app, this is the same as
RUN npm i doing cd in the container

RUN npm run build
EXPOSE 3000
CMD ["npm”, "run”, "start"]

Ezri Zhu (Blueprint@Stevens) Docker deep dive October 1, 2024 12 /22

— Docker deep dive Buting s doker imge

Building a docker image

I—Building a docker image

2024-10-01

1. In the same directory as the Dockerfile, we can now build the
docker image

2. Docker images are named via labels, a image can have mutlple labels

3. Each image has a hash, it’s basically the image's unique 1D

docker build -t ghcr.io/stevensblueprint/project:ezri-latest . 4. But we can also give it a more human readable name, consisted of a

path and a tag

5. usually a path denotes what the application is, such as the name of
the repository

6. and a tag denotes the version that the application is

Ezri Zhu (Blueprint@Stevens) Docker deep dive October 1, 2024 13 /22

docker build -t gher.o/stevensbluprint/projectiezr-atest

— Docker deep dive Buting s doker imge

- . P
Building a docker image =
< [.
(% Building a docker image
1. In the same directory as the Dockerfile, we can now build the
docker image
. 2. Docker images are named via labels, a image can have mutlple labels
docker build -t app . . - . : .
. . . . 3. Each image has a hash, it’s basically the image's unique 1D
docker tag app ghcr.io/stevensblueprint/project:ezri-latest 4. But we can also give it a more human readable name, consisted of a
docker tag app ghcr.io/stevensblueprint/project:latest path and a tag
docker tag app ghcr.io/stevensblueprint/project:staging 5. usually a path denotes what the application is, such as the name of

the repository
6. and a tag denotes the version that the application is

Ezri Zhu (Blueprint@Stevens) Docker deep dive October 1, 2024 14 /22

_— Docker deep dive Pustin dockr e

i
. . o
Pushing a docker image S :
§ I—Pushing a docker image
N
1. Now, we can use docker push to push it to the docker registery
2. In our case, we're using ghcr.io, which is the github container
registry
docker push ghcr.io/stevensblueprint/project:ezri-latest 3. That's basically a place where we store our container images, and
docker push ghcr.io/stevensblueprint/project:latest we can pull them from other places

docker push ghcr.io/stevensblueprint/project:staging

Ezri Zhu (Blueprint@Stevens) Docker deep dive October 1, 2024 15 /22

-
Launching a docker container

DOCkeI’ deep d|Ve Launching a docker container

I—Launching a docker container

2024-10-01

docker run —name app-test -p 8080:8080
ghcr.io/stevensblueprint/project:ezri-latest

Full options here:

https://docs.docker.com /reference/cli/docker/container/run/

Ezri Zhu (Blueprint@Stevens) Docker deep dive October 1, 2024 16 /22

— Docker deep dive Witing docer compese e

Writing a docker compose file
I—Writing a docker compose file

2024-10-01

services:
redis:
image: redis:latest
restart: always

ports:
— "6379:6379"
api:
build :
dockerfile: Dockerfile
context:
restart: always
ports:
— "78080:8080"
depends_on:
— redis

Ezri Zhu (Blueprint@Stevens) Docker deep dive October 1, 2024 17 /22

- Docker deep dive Lacting adocker compos

Launching a docker compose

I—Launching a docker compose

2024-10-01

docker compose up (-d)
docker compose down
docker compose ps
docker compose logs

Ezri Zhu (Blueprint@Stevens) Docker deep dive October 1, 2024 18 /22

_— Docker deep dive Recan
Recap

L Reca p

2024-10-01

Dockerfile: Defines a docker image

Docker Image: A portable runtime environment

Docker registry: A place to store docker images

Docker container: A running instance of a docker image

Docker compose: A collection of docker containers and its dependencies

Ezri Zhu (Blueprint@Stevens) Docker deep dive October 1, 2024 19 /22

nuances missed

Docker deep dive s s

L huances missed

2024-10-01

1. docker is not the only way to do linux contianers, but for the sake of
simplicity this ppt only talked ab dockers
2. Feel free to also ask about how we're using github actions to build
OCI Containers vs Docker contianers and test, and deploy docker containers in our Cl/CD workflow
Look into: github.com/containers/crun

Also see also: mobyproject.org/

Ezri Zhu (Blueprint@Stevens) Docker deep dive October 1, 2024 20/22

N
related tech

Docker deep dive e e

L related tech

2024-10-01

1. basically other ways we run/scale applications

firecracker MVM (orig): firecracker-microvm.github.io firecracker MVM 2. happy to talk ab them after the talk

(flyio): fly.io/blog/sandboxing-and-workload-isolation

v8 isolates (cf talk) www.infoq.com/presentations/cloudflare-v8

v isolates (cf security)

developers.cloudflare.com /workers/reference /security-model

v8 isolates (deno edition) deno.com/blog/anatomy-isolate-cloud

v8 isolates (deno but diff) blog.val.town/blog/first-four-val-town-runtimes
Nix, Flakes, NixOS

Ezri Zhu (Blueprint@Stevens) Docker deep dive October 1, 2024 21/22

— Docker deep dive Than o

Thank you!
LThank you!

2024-10-01

Questions?

Ezri Zhu (Blueprint@Stevens) Docker deep dive October 1, 2024 22/22

