
Docker deep dive
How we leverage the Docker stack

Ezri Zhu
tzhu22@stevens.edu

https://ezrizhu.com

Bluepring @ Stevens Institute of Technology

October 1, 2024

Ezri Zhu (Blueprint@Stevens) Docker deep dive October 1, 2024 1 / 22

Docker deep dive
How we leverage the Docker stack

Ezri Zhu
tzhu22@stevens.edu

https://ezrizhu.com

Bluepring @ Stevens Institute of Technology

October 1, 20242
0
2
4
-1
0
-0
1

Docker deep dive

1. Hello, my name is Ezri Zhu I am a second year computer science
undergrad at the Stevens Institute of Technology

2. I have been the VP of tech at blueprint since last year. There will
be a Q&A at the end, tho feel free to interrupt me during the
presentation for questions.

https://ezrizhu.com
https://ezrizhu.com

Dockerfile, Docker Images

Docker Container

Docker Registry

Docker-compose

Logo credit: https://github.com/Aikoyori/ProgrammingVTuberLogos/

Ezri Zhu (Blueprint@Stevens) Docker deep dive October 1, 2024 2 / 22

Dockerfile, Docker Images

Docker Container

Docker Registry

Docker-compose

Logo credit: https://github.com/Aikoyori/ProgrammingVTuberLogos/2
0
2
4
-1
0
-0
1

Docker deep dive

1. In this talk I will do a overview of the different components of a
typical docker deployment, then we’ll get into how exactly we’re
leveraging Docker at Blueprint

What’s Docker for? - The Bigger Picture

Docker simplifies software development and deployment by packaging
applications and their dependencies into portable containers, that their
behavior are the same across different environment.

Developer develops their application

Developer writes a Dockerfile, defining how to package their
application in a docker container

Developer builds the Dockerfile into an image, pushes to a registry

Developer pulls the image from the registry on the deployment server

At the same time, developer 2 can also pull the same image and test
it on their machine

Ezri Zhu (Blueprint@Stevens) Docker deep dive October 1, 2024 3 / 22

What’s Docker for? - The Bigger Picture

Docker simplifies software development and deployment by packaging
applications and their dependencies into portable containers, that their
behavior are the same across different environment.

Developer develops their application

Developer writes a Dockerfile, defining how to package their
application in a docker container

Developer builds the Dockerfile into an image, pushes to a registry

Developer pulls the image from the registry on the deployment server

At the same time, developer 2 can also pull the same image and test
it on their machine2

0
2
4
-1
0
-0
1

Docker deep dive

What’s Docker for? - The Bigger Picture

1. I will first give you a quick overview of how docker is used in a
typical development cycle

2. We’re mostly software developers here, and I am sure most of you
have ran into the issue where someone’s application doesn’t work on
someone elses computer

3. Those issues are usually solved by dependency issues, a certain
python application may rely on a bunch of other python
dependencies, and your systems package manager may also provide
these packages but under different versions, thus also breaking
seeemly working deployments

4. With docker, you define exactly what the environment is, from the
base OS image that the container is built from, to unpacking your
application

Linux Namespace via unshare

This is your computer, a program usually have access to all of these
system resources provided by the Kernel.
By default, processes you call will inherit all of your namespaces

Ezri Zhu (Blueprint@Stevens) Docker deep dive October 1, 2024 4 / 22

Linux Namespace via unshare

This is your computer, a program usually have access to all of these
system resources provided by the Kernel.
By default, processes you call will inherit all of your namespaces

2
0
2
4
-1
0
-0
1

Docker deep dive

Linux Namespace via unshare

1. This is your computer, a program usually have access to all of these
system resources provided by the Kernel.

2. By default, processes you call will inherit all of your namespaces,
just like how when you prefix a command with sudo, it will inherit
all of root’s permissions

3. Here, you will notice three programs, a nginx reverse proxy, a
postgres database, and my amazing webapp written in rust

4. As you can see, nginx is able to reverse proxy the webapp because
they both share a network namespace

5. Then, the webapp is able to communicate with the postgres
database via a socket, so that’s done in the IPC namespace

6. There are other namespaces (PID, filesystem mounts, control
groups, users), but we will pretend they don’t exist for now for the
sake of simplicity.

Linux Namespace via unshare

TD’s Computer (he’s a bit paranoid)

Ezri Zhu (Blueprint@Stevens) Docker deep dive October 1, 2024 5 / 22

Linux Namespace via unshare

TD’s Computer (he’s a bit paranoid)

2
0
2
4
-1
0
-0
1

Docker deep dive

Linux Namespace via unshare

1. Here is an example of linux namespaces being used in the real world
2. TD has a computer and he really doesn’t want to be tracked by ad

companies and other organizations on the internet.
3. So he has three VPN setup in three separate linux network

namespaces.
4. He then spawns a browser in each of the three namespaces, where

he will work on different things.
5. This allows him to have three different IP addresses on the browser.

Overlayfs

How overlayfs works

https://docs.kernel.org/filesystems/overlayfs.html

Ezri Zhu (Blueprint@Stevens) Docker deep dive October 1, 2024 6 / 22

Overlayfs

How overlayfs works

https://docs.kernel.org/filesystems/overlayfs.html2
0
2
4
-1
0
-0
1

Docker deep dive

Overlayfs

1. Overlayfs at minimum uses four directories, a lowerdir, a upperdir, a
workdir, and a directry to mount the merged view of everything

2. lowerdir contains everything that were already in the system, and
overlayfs will not write to it

3. the merged directory, which we labled as overlay view on the
diagram, is where we will be interacting with overlayfs

4. upperdir is where overlayfs will write changes to when they are
made in the merged directory.

5. workdir is where overlay stage changes to as it is copying files up
from lowerdir to upperdir

https://docs.kernel.org/filesystems/overlayfs.html
https://docs.kernel.org/filesystems/overlayfs.html

Overlayfs

Beginning state

Ezri Zhu (Blueprint@Stevens) Docker deep dive October 1, 2024 7 / 22

Overlayfs

Beginning state

2
0
2
4
-1
0
-0
1

Docker deep dive

Overlayfs

1. For example, we have two directories, lowerdir 1, and lowerdir 2,
and they each contains two files

2. You don’t need to have two lower-directories, and when you first
start overlayfs with two lowerdirs, it will just merge the two

3. You will have to give overlayfs three empty directories, one for the
upperdir, one for the workdir, and one to mount the overlay view to

4. after overlayfs is mounted to the overlay view, you are able to see
the four files from the two lower directories in from the overlay view

Overlayfs

Makes file 5, edits file 1

Ezri Zhu (Blueprint@Stevens) Docker deep dive October 1, 2024 8 / 22

Overlayfs

Makes file 5, edits file 1

2
0
2
4
-1
0
-0
1

Docker deep dive

Overlayfs

1. Here we’ll make a new file called file 5, and we will edit file 1
2. As you can see, overlayfs writes the updated file 1, and creates file 5

in upperdir, leaving lowerdir alone. However, the changes are
reflected in the overlay view

Overlayfs

Deletes file 2

Ezri Zhu (Blueprint@Stevens) Docker deep dive October 1, 2024 9 / 22

Overlayfs

Deletes file 2

2
0
2
4
-1
0
-0
1

Docker deep dive

Overlayfs

1. Here, we will delete file two. For file deletions, overlayfs will write a
character device at the location of the file that it is removing, and
the file will disappear from the overlay view

2. You probably didn’t understand all of that, but the main takeaway is
that overlayfs allows us to stack filesystems on top of each other
like a hamburger, and if we want to add some files, we just add a
lettuce on the top with more files, if we want to remove some files,
we add a lettuce on the top with a hole at where the file is

3. And that’s how docker images are built, its just a big hamburger of
layers of filesystem states

Overlayfs

mount =t o v e r l a y o v e r l a y \
=o ” l ow e r d i r=$ l owe rd i r 1 , $ l owe rd i r 2 , u p p e r d i r=$uppe rd i r , wo r kd i r=$workd i r ” ” $o v e r l a y ”

Ezri Zhu (Blueprint@Stevens) Docker deep dive October 1, 2024 10 / 22

Overlayfs

mount =t o v e r l a y o v e r l a y \
=o ” l ow e r d i r=$ l owe rd i r 1 , $ l owe rd i r 2 , u p p e r d i r=$uppe rd i r , wo r kd i r=$workd i r ” ” $o v e r l a y ”

2
0
2
4
-1
0
-0
1

Docker deep dive

Overlayfs

And this is how you start an overlay mount

Overlayfs

$ docke r p u l l p o s t g r e s
Us ing d e f a u l t tag : l a t e s t
l a t e s t : P u l l i n g from l i b r a r y / p o s t g r e s
a803e7c4b030 : Pu l l complete
009 c876521a0 : Pu l l complete
9 c412905cca2 : Pu l l complete
6463 d4bf467a : Pu l l complete
bd8b983728ed : Pu l l complete
f ebc167 f3560 : Pu l l complete
d73c81c4ade3 : Pu l l complete
34 b3b0ac6e9e : P u l l complete
9 bd86d074f4e : P u l l complete
406 f63329750 : Pu l l complete
ec40772694b7 : Pu l l complete
7 d3dfa1637e9 : P u l l complete
e217ca41159f : P u l l complete
D i g e s t : sha256 : f 1aa f6 f8be5552be f66c5580e fbd2942c37d7277cd0416e f4939 fa34b f0ba f31
S ta tu s : Downloaded newer image f o r p o s t g r e s : l a t e s t
docke r . i o / l i b r a r y / p o s t g r e s : l a t e s t

Ezri Zhu (Blueprint@Stevens) Docker deep dive October 1, 2024 11 / 22

Overlayfs

$ docke r p u l l p o s t g r e s
Us ing d e f a u l t tag : l a t e s t
l a t e s t : P u l l i n g from l i b r a r y / p o s t g r e s
a803e7c4b030 : Pu l l complete
009 c876521a0 : Pu l l complete
9 c412905cca2 : Pu l l complete
6463 d4bf467a : Pu l l complete
bd8b983728ed : Pu l l complete
f ebc167 f3560 : Pu l l complete
d73c81c4ade3 : Pu l l complete
34 b3b0ac6e9e : P u l l complete
9 bd86d074f4e : P u l l complete
406 f63329750 : Pu l l complete
ec40772694b7 : Pu l l complete
7 d3dfa1637e9 : P u l l complete
e217ca41159f : P u l l complete
D i g e s t : sha256 : f 1aa f6 f8be5552be f66c5580e fbd2942c37d7277cd0416e f4939 fa34b f0ba f31
S ta tu s : Downloaded newer image f o r p o s t g r e s : l a t e s t
docke r . i o / l i b r a r y / p o s t g r e s : l a t e s t

2
0
2
4
-1
0
-0
1

Docker deep dive

Overlayfs

1. And this is also how docker works, when you build a container, each
line in the dockerfile is being written to it’s own upperdir, with
everything preceding are just lowerdirs in a merged view

2. So when you pull a docker image and run it, each layer is just a
lowerdir, and your container is mounted on the overlay view

Dockerfile

A Quick Example

FROM node :20
WORKDIR /app
COPY . .
RUN npm i
RUN npm run b u i l d
EXPOSE 3000
CMD [”npm” , ” run ” , ” s t a r t ”]

Ezri Zhu (Blueprint@Stevens) Docker deep dive October 1, 2024 12 / 22

Dockerfile

A Quick Example

FROM node :20
WORKDIR /app
COPY . .
RUN npm i
RUN npm run b u i l d
EXPOSE 3000
CMD [”npm” , ” run ” , ” s t a r t ”]

2
0
2
4
-1
0
-0
1

Docker deep dive

Dockerfile

1. This is a pretty standard Dockerfile for a node application, packed
by npm

2. First, we pull the node:20 image, maintianed by the nice people over
at nodejs, this allows us to pin our node version to be at 20

3. Second, we set the working directory to /app, this is the same as
doing cd in the container

Building a docker image

docker build -t ghcr.io/stevensblueprint/project:ezri-latest .

Ezri Zhu (Blueprint@Stevens) Docker deep dive October 1, 2024 13 / 22

Building a docker image

docker build -t ghcr.io/stevensblueprint/project:ezri-latest .

2
0
2
4
-1
0
-0
1

Docker deep dive

Building a docker image

1. In the same directory as the Dockerfile, we can now build the
docker image

2. Docker images are named via labels, a image can have mutlple labels
3. Each image has a hash, it’s basically the image’s unique ID
4. But we can also give it a more human readable name, consisted of a

path and a tag
5. usually a path denotes what the application is, such as the name of

the repository
6. and a tag denotes the version that the application is

Building a docker image

docker build -t app .
docker tag app ghcr.io/stevensblueprint/project:ezri-latest
docker tag app ghcr.io/stevensblueprint/project:latest
docker tag app ghcr.io/stevensblueprint/project:staging

Ezri Zhu (Blueprint@Stevens) Docker deep dive October 1, 2024 14 / 22

Building a docker image

docker build -t app .
docker tag app ghcr.io/stevensblueprint/project:ezri-latest
docker tag app ghcr.io/stevensblueprint/project:latest
docker tag app ghcr.io/stevensblueprint/project:staging

2
0
2
4
-1
0
-0
1

Docker deep dive

Building a docker image

1. In the same directory as the Dockerfile, we can now build the
docker image

2. Docker images are named via labels, a image can have mutlple labels
3. Each image has a hash, it’s basically the image’s unique ID
4. But we can also give it a more human readable name, consisted of a

path and a tag
5. usually a path denotes what the application is, such as the name of

the repository
6. and a tag denotes the version that the application is

Pushing a docker image

docker push ghcr.io/stevensblueprint/project:ezri-latest
docker push ghcr.io/stevensblueprint/project:latest
docker push ghcr.io/stevensblueprint/project:staging

Ezri Zhu (Blueprint@Stevens) Docker deep dive October 1, 2024 15 / 22

Pushing a docker image

docker push ghcr.io/stevensblueprint/project:ezri-latest
docker push ghcr.io/stevensblueprint/project:latest
docker push ghcr.io/stevensblueprint/project:staging

2
0
2
4
-1
0
-0
1

Docker deep dive

Pushing a docker image

1. Now, we can use docker push to push it to the docker registery
2. In our case, we’re using ghcr.io, which is the github container

registry
3. That’s basically a place where we store our container images, and

we can pull them from other places

Launching a docker container

docker run –name app-test -p 8080:8080
ghcr.io/stevensblueprint/project:ezri-latest
Full options here:
https://docs.docker.com/reference/cli/docker/container/run/

Ezri Zhu (Blueprint@Stevens) Docker deep dive October 1, 2024 16 / 22

Launching a docker container

docker run –name app-test -p 8080:8080
ghcr.io/stevensblueprint/project:ezri-latest
Full options here:
https://docs.docker.com/reference/cli/docker/container/run/

2
0
2
4
-1
0
-0
1

Docker deep dive

Launching a docker container

Writing a docker compose file

s e r v i c e s :
r e d i s :

image : r e d i s : l a t e s t
r e s t a r t : a lways
p o r t s :
= ”6379:6379”

ap i :
b u i l d :

d o c k e r f i l e : D o c k e r f i l e
c on t e x t : .

r e s t a r t : a lways
p o r t s :
= ”8080:8080”

depends on :
= r e d i s

vo lumes :
r e d i s :

d r i v e r : l o c a l

Ezri Zhu (Blueprint@Stevens) Docker deep dive October 1, 2024 17 / 22

Writing a docker compose file

s e r v i c e s :
r e d i s :

image : r e d i s : l a t e s t
r e s t a r t : a lways
p o r t s :
= ”6379:6379”

ap i :
b u i l d :

d o c k e r f i l e : D o c k e r f i l e
c on t e x t : .

r e s t a r t : a lways
p o r t s :
= ”8080:8080”

depends on :
= r e d i s

vo lumes :
r e d i s :

d r i v e r : l o c a l

2
0
2
4
-1
0
-0
1

Docker deep dive

Writing a docker compose file

Launching a docker compose

docker compose up (-d)
docker compose down
docker compose ps
docker compose logs

Ezri Zhu (Blueprint@Stevens) Docker deep dive October 1, 2024 18 / 22

Launching a docker compose

docker compose up (-d)
docker compose down
docker compose ps
docker compose logs

2
0
2
4
-1
0
-0
1

Docker deep dive

Launching a docker compose

Recap

Dockerfile: Defines a docker image
Docker Image: A portable runtime environment
Docker registry: A place to store docker images
Docker container: A running instance of a docker image
Docker compose: A collection of docker containers and its dependencies

Ezri Zhu (Blueprint@Stevens) Docker deep dive October 1, 2024 19 / 22

Recap

Dockerfile: Defines a docker image
Docker Image: A portable runtime environment
Docker registry: A place to store docker images
Docker container: A running instance of a docker image
Docker compose: A collection of docker containers and its dependencies

2
0
2
4
-1
0
-0
1

Docker deep dive

Recap

nuances missed

OCI Containers vs Docker contianers
Look into: github.com/containers/crun
Also see also: mobyproject.org/

Ezri Zhu (Blueprint@Stevens) Docker deep dive October 1, 2024 20 / 22

nuances missed

OCI Containers vs Docker contianers
Look into: github.com/containers/crun
Also see also: mobyproject.org/

2
0
2
4
-1
0
-0
1

Docker deep dive

nuances missed

1. docker is not the only way to do linux contianers, but for the sake of
simplicity this ppt only talked ab dockers

2. Feel free to also ask about how we’re using github actions to build
and test, and deploy docker containers in our CI/CD workflow

related tech

firecracker MVM (orig): firecracker-microvm.github.io firecracker MVM
(flyio): fly.io/blog/sandboxing-and-workload-isolation
v8 isolates (cf talk) www.infoq.com/presentations/cloudflare-v8
v8 isolates (cf security)
developers.cloudflare.com/workers/reference/security-model
v8 isolates (deno edition) deno.com/blog/anatomy-isolate-cloud
v8 isolates (deno but diff) blog.val.town/blog/first-four-val-town-runtimes
Nix, Flakes, NixOS

Ezri Zhu (Blueprint@Stevens) Docker deep dive October 1, 2024 21 / 22

related tech

firecracker MVM (orig): firecracker-microvm.github.io firecracker MVM
(flyio): fly.io/blog/sandboxing-and-workload-isolation
v8 isolates (cf talk) www.infoq.com/presentations/cloudflare-v8
v8 isolates (cf security)
developers.cloudflare.com/workers/reference/security-model
v8 isolates (deno edition) deno.com/blog/anatomy-isolate-cloud
v8 isolates (deno but diff) blog.val.town/blog/first-four-val-town-runtimes
Nix, Flakes, NixOS

2
0
2
4
-1
0
-0
1

Docker deep dive

related tech

1. basically other ways we run/scale applications
2. happy to talk ab them after the talk

Thank you!

Questions?

Ezri Zhu (Blueprint@Stevens) Docker deep dive October 1, 2024 22 / 22

Thank you!

Questions?

2
0
2
4
-1
0
-0
1

Docker deep dive

Thank you!

