
The controller-service-repository (CSR) pattern is a pattern used to build software applications.

It divides the software into three distinct sections, here's a quick summary, see further below for
more:

Controller: Processes incoming requests and returns a response (like a front desk job). This
communication most likely uses HTTP.

Service: Processes data from controller, then, based on controller data, communicates with
repository. For example, if the data from the controller is requesting specific information, the
service layer can get information from the repository, process the retrieved information, and then
return it to the controller.

Communication between the controller and service layer uses DTO (Data Transfer Objects) which is
essentially nicely packaged data. The controller may receive an HTTP request in a JSON format,
then convert it to a DTO which is sent to the service layer.

Repository: The service talks to the repository/data layer for persistence (making sure the data is
maintained even after the program is run). It handles all the details of accessing and storing data.

The controller handles incoming requests and returns appropriate responses (usually using HTTP
(Hypertext Transfer Protocol) and TCP (Transmission Control Protocol)).

An API establishes an interface for two processes to communicate. This could be a way for an app
on your phone to communicate with your phone’s operating system, it could also be a web API for
communicating over the internet. Whenever you use the “Login with Google” feature, the website
you are trying to log in to (using your Google account) will send an API request to Google’s API,
which will send a response confirming your identity.

Backend Wiki

Controller-Service-Repository Pattern

Controller:
What does the Controller layer do?

REST, API, and HTTP

https://wiki.sitblueprint.com/link/100#bkmrk-http

REST (Representational State Transfer) is a software architecture that has rules for how APIs should
communicate. If an API follows the principles of REST, then it is a "RESTful API" (a.k.a. REST API).

In order to communicate between them, HTTP (Hypertext Transfer Protocol) methods (such as GET,
POST, DELETE) are used.

The service layer receives data from the Controller layer and performs "business logic" by
communicating with the Repository layer to fetch or store data.

It's a very broad term, but it generally means the logic that relates the software to the real-world--
as opposed to the lower-level logic such as displaying something to your screen.

For example, this may include data validation, or making sure that the data entered is the correct
type. Let's say a user was making changes to a database and wanted to enter a string where the
cost of a cookie should be. We, as humans, understand that the cost of a cookie should be a dollar
amount, not some blurb of text; business logic is our way of telling a program this so it will not
allow the change to happen.

As another example, let's say the controller is asking for the number of cookies left in a jar. The
service layer would communicate with the repository layer to get the number of cookies originally
in the jar and the number of cookies taken out of the jar. Then, it would subtract to two for the
number of remaining cookies and return it.

The repository layer is focused on handling data and modifying and retrieving data from the
database.

Structured Querying Language (SQL) is a language used by Relational Database Management
System (RDBMS) such as PostgreSQL in order to manage databases.

The repository will communicate with the PostgreSQL database to get or change information.

Service:
What does the Service layer do?

Business Logic

Repository:
What does the Repository layer do?

SQL and PostgreSQL

Java Persistence API (JPA)

Bridges the gap between object-oriented programming and relational databases. Basically, it maps
Java objects to database tables.

"The Java Persistence API (JPA) is the Java API specification that bridges the gap between relational
databases and object-oriented programming by handling the mapping of the Java objects to the
database tables and vice-versa. This process is known as the Object Relational Mapping (ORM). JPA
can define the way Java classes (entities) are mapped to the database tables and how they can
interact with the database through the EntityManager, the Persistence context, and transactions."

JPA - Introduction - GeeksforGeeks

A relational database is--as the name suggests--a type of database. Data is stored in multiple
tables, all with some relation to each other.

For any given table, each row has a unique ID called a "key".

Users:

id first_name last_name account_balance

1 Jane Doe $2203

2 John Doe $1039

3 Ada Lovelace $5000

Orders:

order_num customer payment_amount

1 2 $50

2 3 $200

3 1 $80

4 2 $70

As shown in the example above, every row in both tables has a "key" (id and order_num).
Additionally, they are related because every order has a customer id number associated with it

Relational Database
What is a Relational Database?

https://www.geeksforgeeks.org/jpa-object-relational-mapping/
https://www.geeksforgeeks.org/jpa-introduction/

(ie., the "customer" column in the Orders table contains the "id" in the Users table).

For example, for order 1, the row has 2 listed as the customer, which relates back to the id of John
Doe in the Users table.

you need to learn SQL RIGHT NOW!! (SQL Tutorial for Beginners)
What Is a Relational Database | Oracle: https://www.oracle.com/database/what-is-a-
relational-database/

SQL stands for Structured Query Language.

It is used by a Relational Database Management System (RDBMS) such as PostgreSQL, MySQL, etc.,
as a "language" to manipulate a Relational Database.

A NoSQL database is a non-relational database meaning that the structure is different from that of
an SQL database. Instead of tables, NoSQL databases typically store information as JSON objects.
Overall, it is a much more dynamic system since there does not need to be a predefined schema
that each item needs to conform to. In the end, NoSQL databases are better suited if you have
unstructured data.

One prominent example of a NoSQL database is MongoDB. It uses JSON-like documents to store
data, and it organizes these documents into collections to be queried. This collection method of
organizing data can make data retrieval faster in some use cases, particularly when dealing with
large amounts of data.

Videos

you need to learn SQL RIGHT NOW!! (SQL Tutorial for Beginners) - Network Chuck:
https://youtu.be/xiUTqnI6xk8
Overview of Scaling: Vertical And Horizontal Scaling - GeeksforGeeks
SQL vs. NoSQL: What's the difference? - IBM Technology: https://youtu.be/Q5aTUc7c4jg
MongoDB in 100 Seconds - Fireship: https://youtu.be/-bt_y4Loofg

Resources

SQL
What is SQL?

SQL vs NoSQL Database

Resources

https://www.youtube.com/watch?v=xiUTqnI6xk8&t=356s
https://www.oracle.com/database/what-is-a-relational-database/
https://www.oracle.com/database/what-is-a-relational-database/
https://youtu.be/xiUTqnI6xk8
https://www.geeksforgeeks.org/overview-of-scaling-vertical-and-horizontal-scaling/
https://youtu.be/Q5aTUc7c4jg
https://youtu.be/-bt_y4Loofg

MySQL - How to run SQL file or script from the terminal | sebhastian

HTTP or Hypertext Transfer Protocol is a protocol (as the name suggests) that is used to
communicate between client and server on the world wide web.

This is probably used in your everyday life! Whenever you search a URL for example, an HTTP
request is sent to a server which sends back an appropriate response; most of the time, it's the
webpage you were looking for.

Image not found or type unknown

A GET request is used to retrieve information from a server. For example, if we want to access a
webpage, we can use a GET request to get information from the webserver.

HTTP
What is HTTP

GET, POST, DELETE
GET

POST

https://sebhastian.com/mysql-running-sql-file/

A POST request is used for creating new data. If you were to make a new account, a POST request
would be used to create the account on the server

This is used to delete data from a server such as removing a user profile.

HTTP is based on a number of methods, however the most basic ones are GET and POST .

Sample Request:
The snippet below asks for a resource at example.com/contact:

In this case, we are doing GET / indicating that we are getting the root of example.com. User-Agent
and Accept are examples of headers which specify additional arguments to include in the request.
User-Agent specifies information such as browser information (or in this case the version of the curl
command). Accept indicates the type of response that the request will accept (which is all in this
case).

You can try this request yourself in the terminal (use Command Prompt, not PowerShell for this if
you are on windows). The -i flag simply signals to include response headers.

Without headers:

With headers:

Sample Response
In our case, we sent a request to the webpage, so we will get the HTML for that webpage back.
However, we will also receive the response headers. It will look something like this:

DELETE

What Does HTTP Look Like?

GET / HTTP/1.1

Host: example.com

User-Agent: curl/8.6.0

Accept: */*

GET - HTTP | MDN

curl -i -X GET example.com

curl -i -X GET http://example.com -H "User-Agent: curl/8.6.0" -H "Accept: */*"

In this scenario, -X GET is redundant since it is the default method.

The first line includes our status code, in this case 200, which means OK. Others include 404 (Not
Found), 403 (Access Denied), 503 (Service Unavailable) among others.

What is HTTP ? - GeeksforGeeks
HTTP request methods - HTTP | MDN
How to use curl on Windows – 4sysops

REST stands for Representational State Transfer. It is a software architecture that has rules for how
APIs should communicate. If an API follows the principles of REST, then it is a "RESTful API" (a.k.a.
REST API).

 What is REST?: REST API Tutorial

HTTP/1.1 200 OK

Content-Type: text/html

ETag: "84238dfc8092e5d9c0dac8ef93371a07:1736799080.121134"

Last-Modified: Mon, 13 Jan 2025 20:11:20 GMT

Cache-Control: max-age=1405

Date: Thu, 16 Jan 2025 17:46:37 GMT

Content-Length: 1256

Connection: keep-alive

Resources

REST API
What is REST?

What are the guidelines for REST?

https://www.geeksforgeeks.org/what-is-http/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
https://4sysops.com/archives/how-to-use-curl-on-windows/
https://restfulapi.net/

Image not found or type unknown

For our specific context, we will look at how HTTP (a method of communication for APIs) can be
RESTful

1. Uniform Interface
HTTP uses standard methods such as GET, POST, and DELETE.

2. Client-Server
The UI is handled by the frontend while the business logic and data storage is handled by
the backend.

3. Stateless
HTTP requests are self-contained, so they don't need information from previous requests.

4. Cacheable
HTTP responses can be "cached" meaning that they can be stored for later use. For
example, webpages can be cached so they can be loaded faster.

5. Layered System
Gateways and proxies are layers between the client and server. A proxy might redirect
requests to different servers to prevent overloading one particular server.

6. Code on Demand
When a server sends code to run client-side (locally) on your computer such as JavaScript.
This is not too common due to security concerns; it's also why you'll sometimes get a
popup saying, "Allow website to run JavaScript."

Dependency Injection
What is Dependency-Injection?

Dependency-Injection (DI) is a design pattern used in Object-Oriented languages, such as Java, as a
way to decouple classes from dependencies, or make the classes more separated from their
dependencies. This is done in order to make testing and maintaining the code easier.

Example from: Dependency Injection Made Simple with Java Examples | Clean Code and Best
Practices | Geekific: https://youtu.be/GATSXm7WAxU

In order to better understand what DI is and the problem it is supposed to solve, let's see some
code without DI.

Notice how the Chef class instantiates a Burger object (in the line burger = new Burger()). In this
case, the Burger class is a dependency of the Chef class. The Chef class needs the Burger class
in order to run.

This is okay if we only prepare burgers, but if we want other foods then it may look something like
this. Let's say we introduce a Pizza class:

Then our Chef will look something like this:

What Does it Look Like?

Before DI:

public interface Food {}

public class Burger implements Food {}

public class Chef

{

	private Food burger;

 public Chef ()

 {

 	burger = new Burger();

 }

 public void prepareFood()

 {

 	//do something with burger

 }

}

public class Pizza implements Food {}

https://youtu.be/GATSXm7WAxU

There are other ways as well, such as having multiple instances of the Chef class. Either way, this
makes things very interdependent; every time we change menus, we will need to update the Chef
class as well.

Let's keep with the same example as before:

However this time with the Chef class:

public class Chef

{

 private Food burger;

 private Food pizza;

 public Chef ()

 {

 	burger = new Burger();

 	pizza = new Pizza();

 }

 public void prepareBurger()

 {

 //do something with burger

 }

 public void preparePizza()

 {

 //do something with pizza

 }

}

After DI

public interface Food {}

public class Burger implements Food {}

public class Pizza implements Food {}

public class Chef

{

	private Food food;

Notice the changes to the constructor. When initializing the Food class, we will pass the
dependency as a parameter, or "inject" the dependency.

We can then instantiate the Chef object as such:

Now, it doesn't matter what food is being added or removed, it (as the dependency) will simply be
"injected" in.

The example shown above is constructor injection, since the dependency is injected in the
constructor.

There is also setter injection where a setter method takes a dependency as input and assigns it to
an object variable.

Finally, there is field injection where the dependency is set outside of the class it is being injected
into.

Generally, constructor injection is favored because the dependency is apparent in the constructor
signature, which is not true for the other two methods.

Example from: Dependency Injection Made Simple with Java Examples | Clean Code and
Best Practices | Geekific: https://youtu.be/GATSXm7WAxU
design patterns - What is dependency injection? - Stack Overflow
Java Dependency Injection (DI) Design Pattern - GeeksforGeeks

 public Chef (Food someFood)

 {

 	this.food = someFood;

 }

 public void prepareFood()

 {

 	//do something with burger

 }

}

Chef burgerChef = new Chef(new Burger());

Chef pizzaChef = new Chef(new Pizza());

Types of Dependency Injection

Resources

https://youtu.be/GATSXm7WAxU
https://stackoverflow.com/questions/130794/what-is-dependency-injection?page=1&tab=scoredesc#tab-top
https://www.geeksforgeeks.org/dependency-injection-di-design-pattern/#what-is-the-dependency-injection-design-pattern-in-java

SQL Server Sample Database

Revision #6
Created 2 April 2025 03:01:06 by Chinli Ong
Updated 23 April 2025 18:32:55 by Miguel Merlin

https://www.sqlservertutorial.net/getting-started/sql-server-sample-database/

