
This notebook will have Sarapis related resources

Sarapis Architecture Design
Managed Pipeline
10/9 Meeting Minutes
Sarapis Development Resources

Sarapis

Sarapis has an open-source backend data administrator interface tailored for managing Human
Services Data Standard (HSDS) datasets, which provide standardized information about health,
human, and social services. The project's primary objective will be to create a modular, service-
based backend that simplifies the management, validation, and interaction of HSDS datasets.

Interoperability and Standardization: Enhance data interoperability by providing a
platform that validates HSDS formats and ensures interface consistency in managing
health, human, and social services information across various organizations.
Scalability and Modularity: The service must provide modularity and scalability to
ensure seamless integration with other HSDS-supporting applications.

Database Management: CRUD (Create, Read, Update, Delete) operations for managing
various HSDS entities
Taxonomy Management: Tools for managing and customizing taxonomies to classify
resources and services.
Data Validation: Integration with OpenReferralsUK's schema validator to ensure dataset
compliance with HSDS specifications
User and Role Management: Comprehensive user account, permissions, and
authentication features to control access and data integrity.
Import/Export functionality: Support for data import and export in multiple formats to
facilitate data exchange and integration

The backend service will be hosted and deployed to AWS. Therefore, we can leverage existing AWS
services to achieve some of the key features mentioned in the project specification. The service
does not require scalable services for each feature, so the Micro-service architecture is discarded.
Instead, the backend service will follow a monolithic architecture where all the endpoints will be
published in a single service.

Sarapis Architecture Design
Overview

Project Goals

Key Features

High-Level Architecture Overview

AWS Lambda

AWS is a serverless computing service that lets you run code without provisioning or managing
servers. Creating an HTTP server using Lambda involves integrating Lambda with Amazon API
Gateway, a managed service that allows you to create, publish, maintain, and secure RESTful APIs.
This setup enables Lambda to handle incoming HTTP requests, effectively simulating an HTTP
server while leveraging the benefits of a serverless architecture.

Core components

API Gateway as the Request Router: API Gateway serves as the frontend layer,
processing incoming HTTP requests and routing them to Lambda functions. It manages
the HTTP/HTTPS endpoints, handling HTTP method routing (GET, POST, PUT, DELETE),
request authentication, and throttling. API Gateway can also transform incoming requests
and outgoing responses to match specific requirements.
Lambda Function Execution: When an HTTP request hits the API Gateway endpoint, API
Gateway triggers a Lambda function according to the preconfigured route. Lambda then
executes the defined code based on the request's contents. The function’s logic can range
from basic CRUD operations to more complex workflows, such as data processing,
integration with other AWS services, or calling external APIs.
Request-Response Workflow:

Request Mapping: API Gateway maps HTTP requests into event objects that the
Lambda function can interpret. This mapping typically includes path parameters,
query parameters, headers, and body content in JSON format.

https://wiki.sitblueprint.com/uploads/images/gallery/2024-11/image.png

Response Mapping: After executing the function, Lambda returns a response in a
specific format that API Gateway can parse and convert to an HTTP response,
including headers, status codes, and body content. API Gateway handles any
necessary transformation before sending the response to the client.

Error Handling and Retries: Lambda functions can be configured to handle different
errors, allowing for customized responses based on HTTP status codes. API Gateway can
handle retries for idempotent operations, such as GET requests, ensuring reliability
without impacting the underlying function’s state.

Lambdas can also be integrated with AWS Cognito for token-based authentication, or you can also
establish custom Lambda authorizers for more specific access control logic.

Since Lambda is inherently stateless:

External Databases: You’ll connect Lambda to external databases (DynamoDB) to store
and retrieve data.
API Gateway Caching: You can enable caching in API Gateway for specific endpoints to
reduce the frequency of database calls for repeated requests, improving performance and
reducing costs.

1. Cold Starts: If not used recently (i.e., a "cold start"), lambda functions may incur latency
on the first invocation, impacting applications with strict performance requirements.

Elasticsearch serves as a search engine. It is integrated primarily for its ability to index and query,
large volumes of data quickly. In this architecture, Elasticsearch complements DynamoDB by
providing efficient querying capabilities, particularly for complex searches that are not natively
supported in DynamoDB.

Data Ingestion and Synchronization:

Data from DynamoDB Streams: When organizations are created, updated, or deleted
in DynamoDB, a DynamoDB Stream captures these changes. Lambda functions, such as
ESOrganizationLoad and ESOrganizationRemove , listen to these streams.
Indexing in Elasticsearch: Upon detecting relevant changes (like organization creation
or deletion), these Lambda functions update the corresponding indexes in Elasticsearch.
For instance, ESOrganizationLoad would add or update organization data in Elasticsearch,
while ESOrganizationRemove would delete entries.
Consistency: This setup ensures that the data in Elasticsearch mirrors the current state
of organizations in DynamoDB, maintaining consistency across both data stores.

Query Operations:

Limitations and Challenges

Elasticsearch

Enhanced Search Capabilities: When users query organizations (handled by the
ESOrganizationQuery Lambda), Elasticsearch enables more complex and efficient search
functionalities. Elasticsearch’s indexing and full-text search capabilities allow for faster
and more flexible queries, like searching by name, location, or organization type.
Direct Queries for High Performance: By querying directly in Elasticsearch rather than
DynamoDB, response times improve, especially for more intricate or resource-intensive
search patterns.

Indexing Delays: Although the Lambda functions attempt to maintain real-time
synchronization between DynamoDB and Elasticsearch, some minor delays may occur in
propagating changes, depending on the load and configuration.
Data Consistency Management: Ensuring consistency between DynamoDB and
Elasticsearch is crucial. In case of errors or failures in Lambda functions, there could be
discrepancies, which need monitoring and handling to prevent data integrity issues.
Additional Cost and Complexity: Elasticsearch incurs additional costs and adds
complexity, especially for small applications where DynamoDB alone might suffice.
Careful management of Elasticsearch indices and resources is necessary to optimize cost.

You can think of a taxonomy as a structured system used to classify and organize information into
categories, making it easier to understand, manage, and retrieve. It involves some sort of
hierarchical arrangement, where items are grouped into broader categories and further divided
into subcategories.

Spring Boot with EC2 is a traditional setup for deploying a self-contained backend application on
virtual machines. The backend application can be packaged as a standalone executable using a

Challenges with Elasticsearch Integration

Appendix

What is a taxonomy?

Health Services

- Medical Care

- - Primary Care

- - Specialty Care

- Mental Health

Housing Services

- Emergency Shelters

- Affordable Housing

- Housing Assistance Programs

Spring Boot on EC2

Java build tool such as Maven or Gradle. Spring Boot offers dependency management, pre-
configured settings, and integrated database support, making it ideal for creating microservices
and RESTful APIs.

The advantage of choosing Sprint Boot is its more flexible runtime. There are no cold starts. The
application can be stateful by attaching persistent storage to an EC2 instance.

Server Management: EC2 instances require management for updates, scaling, patching,
and security, which can increase operational overhead.
Scaling Complexity: Scaling on EC2 requires manual intervention or automation setup
(e.g., auto-scaling groups), and it may not scale as seamlessly as Lambda.
Potential Idle Costs: With EC2, you pay for uptime regardless of whether the server is
fully utilized, which may make it less cost-effective for low-traffic applications.
Slower Deployment: Changes in your application may require redeployment of the EC2
instances, which can be slower than updating a Lambda function.
Single Point of Failure: If not designed with redundancy (e.g., using load balancers and
multiple instances), a single EC2 instance can become a single point of failure.

Due to the scalability and flexibility requirements of the project following a micro-services
architecture, it will align well with the goals of modularity, scalability, and integration within the
broader open-source ecosystem. The microservice architecture for the proposed HSDS backend
administration interface can be structured as follows:

User Management Service
Functionality: Manages user's accounts, roles, permissions, and authentication
APIs:

`/register`for user registration
`/login` for user login and token issuance
`/roles` for managing roles and permissions

Data Management Service
Functionality: Handles CRUD operations for HSDS data, including organizations,
locations, services, and other related entities.
APIs:

`/create` add a new record
`/read` to retrieve records
`/update` to modify records
`/delete` to remove records

Taxonomy Management Service
Functionality: Manages taxonomies and classifications used within the HSDS
datasets
APIs:

Limitations and Challenges

Microservice Architecture

`/create-taxonomy` to add new taxonomies
`/update-taxonomy` to edit taxonomies
`/list-taxonomies` to view available taxonomies

Data Validation Service
Functionality: Validates the schema and compliance of the dataset using
OpenReferralsUKs validator
APIs:

`/validate` to validate entire datasets or specific records
Data Exchange Service

Functionality: Manages import/export operations for datasets in various formats
APIs:

`/import` to upload and import datasets
`/export` to download a dataset given the correct permissions

You can view the HSDS schema here.

https://docs.openreferral.org/en/v2.0.1/hsds/reference/
https://wiki.sitblueprint.com/uploads/images/gallery/2024-10/y1timage.png

With large projects such as Sarapis with multiple components, it is important to define a process
for testing and releasing new versions. As such, we are proposing a managed pipeline that
automates testing, health checks, and deployments to different evironments. These environments
would include:

Development (Dev)
Quality Assurance (QA)
Production (Prod)

The pipeline should also allow Blueprint to easily rollback versions on the Software. Due to limited
resources, we are looking to build this rapidly with minimum Infrastructure cost. A viable tool that
we can use to fit this objective is GitHub actions, that way are infrastructure remains close to the
code. We may have to use additional tools like Jenkins to handle builds, but that is what this
document will define/explore.

A Minimum Viable Product Might Include:

Hosting for Dev, QA, and Prod environments
Authentication/Authorization for interacting with Dev, QA, and Prod environments
Automated test suites that can be configured different projects
Automated build processes that can be cofigured for different projects
Ability to rollback production deployments to previous versions
Notification system for any failures in the environments

Managed Pipeline

Multiple Repos:

Manage integrations through:

GitHub Action
GHCR

Non-Profit Meeting

Is there better validtor services for HSDS data than UKValidator?
Present architecture
Proposing a shared database, might run into concurrency issues

10/9 Meeting Minutes

https://wiki.sitblueprint.com/uploads/images/gallery/2024-10/VzRimage.png

Ownership:

Jonathan: User Management Service

Terrence: Data Management Service

Devin Meeting:

Sarapis Team Members In-person: Next Wednesday 3:15-3:45 P.M
Thursday/Friday Next Week Miguel/Ezri/Jonathan/Terrence
Miguel will create repositories and project boards

https://docs.openreferral.org/en/v2.0.1/hsds/reference/
http://docs.openreferral.org/en/latest/hsds/schema_reference.html

https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-dynamo-db.html

https://medium.com/@guraycintir/realize-a-simple-crud-api-on-amazon-dynamodb-1457a5e124b7

https://github.com/gcintir/api-gateway-lambda-dynamodb-crud-flow/tree/main

https://docs.aws.amazon.com/cdk/v2/guide/hello_world.html

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-cdk-
testing.html

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-
cli-using-invoke.html

Sarapis Development
Resources
HSDS Reference

Tutorial: Create a CRUD HTTP API with Lambda and
DynamoDB

Realize A Simple CRUD API on Amazon DynamoDB

API Gateway Lambda DynamoDB CRUD Flow Repo

AWS CDK

Testing with SAM

Locally invoke Lambda functions with AWS SAM

https://docs.openreferral.org/en/v2.0.1/hsds/reference/
http://docs.openreferral.org/en/latest/hsds/schema_reference.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-dynamo-db.html
https://medium.com/@guraycintir/realize-a-simple-crud-api-on-amazon-dynamodb-1457a5e124b7
https://github.com/gcintir/api-gateway-lambda-dynamodb-crud-flow/tree/main
https://docs.aws.amazon.com/cdk/v2/guide/hello_world.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-cdk-testing.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-cdk-testing.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-using-invoke.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-using-invoke.html

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/invoke.html

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Query.KeyConditionExpress
ions.html

https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-create-cognito-user-
pool.html

https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-next-steps.html

https://medium.com/@adi2308/aws-cognito-with-reactjs-for-authentication-c8916b873ccb

https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-use-lambda-
authorizer.html

https://github.com/awslabs/amazon-dynamodb-local-samples

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/http-configuration-url.html

https://medium.com/linkit-intecs/getting-started-with-crud-operations-in-spring-boot-and-
dynamodb-a-beginners-guide-75ecad3b0452

SAM invoke documentation

Key condition expressions for the Query operation in
DynamoDB

Create an Amazon Cognito user pool for a REST API

Add more features and security options to your user pool

AWS Cognito with ReactJS for authentication

Use API Gateway Lambda authorizers

DynamoDB Local Sample Java Project

Configure the URLConnection-based HTTP client

DTOs

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/invoke.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Query.KeyConditionExpressions.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Query.KeyConditionExpressions.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-create-cognito-user-pool.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-create-cognito-user-pool.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-next-steps.html
https://medium.com/@adi2308/aws-cognito-with-reactjs-for-authentication-c8916b873ccb
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-use-lambda-authorizer.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-use-lambda-authorizer.html
https://github.com/awslabs/amazon-dynamodb-local-samples
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/http-configuration-url.html
https://medium.com/linkit-intecs/getting-started-with-crud-operations-in-spring-boot-and-dynamodb-a-beginners-guide-75ecad3b0452
https://medium.com/linkit-intecs/getting-started-with-crud-operations-in-spring-boot-and-dynamodb-a-beginners-guide-75ecad3b0452

https://medium.com/@abhishekranjandev/integrating-amazon-cognito-for-authentication-and-
authorization-in-a-spring-boot-application-fe5fe7d78db

https://www.fernandomc.com/posts/easiest-way-to-deploy-aws-containers/

https://howtodoinjava.com/spring-security/spring-boot-role-based-authentication-with-aws-cognito/

Amazon Cognito
Integrating Amazon Cognito for Authentication and
Authorization in a Spring Boot Application

The Easiest Way to Deploy Containers on AWS

Spring Boot Role-Based Authentication with AWS Cognito

https://medium.com/@abhishekranjandev/integrating-amazon-cognito-for-authentication-and-authorization-in-a-spring-boot-application-fe5fe7d78db
https://medium.com/@abhishekranjandev/integrating-amazon-cognito-for-authentication-and-authorization-in-a-spring-boot-application-fe5fe7d78db
https://www.fernandomc.com/posts/easiest-way-to-deploy-aws-containers/
https://howtodoinjava.com/spring-security/spring-boot-role-based-authentication-with-aws-cognito/
https://www.fernandomc.com/posts/easiest-way-to-deploy-aws-containers/

